Goto

Collaborating Authors

 Health Care Technology


FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion

Neural Information Processing Systems

As machine learning models in critical fields increasingly grapple with multimodal data, they face the dual challenges of handling a wide array of modalities, often incomplete due to missing elements, and the temporal irregularity and sparsity of collected samples. Successfully leveraging this complex data, while overcoming the scarcity of high-quality training samples, is key to improving these models' predictive performance. We introduce "FuseMoE", a mixture-of-experts framework incorporated with an innovative gating function. Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories. Theoretically, our unique gating function contributes to enhanced convergence rates, leading to better performance in multiple downstream tasks. The practical utility of FuseMoE in the real world is validated by a diverse set of challenging prediction tasks.


NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes

Neural Information Processing Systems

Although modern imaging technologies allow us to study connectivity between two distinct brain regions in-vivo, an in-depth understanding of how anatomical structure supports brain function and how spontaneous functional fluctuations emerge remarkable cognition is still elusive. Meanwhile, tremendous efforts have been made in the realm of machine learning to establish the nonlinear mapping between neuroimaging data and phenotypic traits. However, the absence of neuroscience insight in the current approaches poses significant challenges in understanding cognitive behavior from transient neural activities. To address this challenge, we put the spotlight on the coupling mechanism of structural connectivity (SC) and functional connectivity (FC) by formulating such network neuroscience question into an expressive graph representation learning problem for high-order topology. Specifically, we introduce the concept of topological detour to characterize how a ubiquitous instance of FC (direct link) is supported by neural pathways (detour) physically wired by SC, which forms a cyclic loop interacted by brain structure and function. In the clichรฉ of machine learning, the multi-hop detour pathway underlying SC-FC coupling allows us to devise a novel multi-head self-attention mechanism within Transformer to capture multi-modal feature representation from paired graphs of SC and FC. Taken together, we propose a biological-inspired deep model, coined as NeuroPath, to find putative connectomic feature representations from the unprecedented amount of neuroimages, which can be plugged into various downstream applications such as task recognition and disease diagnosis. We have evaluated NeuroPath on large-scale public datasets including Human Connectome Project (HCP) and UK Biobank (UKB) under different experiment settings of supervised and zero-shot learning, where the state-of-the-art performance by our NeuroPath indicates great potential in network neuroscience.


Knowledge-Empowered Dynamic Graph Network for Irregularly Sampled Medical Time Series

Neural Information Processing Systems

Irregularly Sampled Medical Time Series (ISMTS) are commonly found in the healthcare domain, where different variables exhibit unique temporal patterns while interrelated. However, many existing methods fail to efficiently consider the differences and correlations among medical variables together, leading to inadequate capture of fine-grained features at the variable level in ISMTS. We propose Knowledge-Empowered Dynamic Graph Network (KEDGN), a graph neural network empowered by variables' textual medical knowledge, aiming to model variable-specific temporal dependencies and inter-variable dependencies in ISMTS. Specifically, we leverage a pre-trained language model to extract semantic representations for each variable from their textual descriptions of medical properties, forming an overall semantic view among variables from a medical perspective. Based on this, we allocate variable-specific parameter spaces to capture variable-specific temporal patterns and generate a complete variable graph to measure medical correlations among variables. Additionally, we employ a density-aware mechanism to dynamically adjust the variable graph at different timestamps, adapting to the time-varying correlations among variables in ISMTS. The variable-specific parameter spaces and dynamic graphs are injected into the graph convolutional recurrent network to capture intra-variable and inter-variable dependencies in ISMTS together. Experiment results on four healthcare datasets demonstrate that KEDGN significantly outperforms existing methods.


SMART: Towards Pre-trained Missing-Aware Model for Patient Health Status Prediction

Neural Information Processing Systems

Electronic health record (EHR) data has emerged as a valuable resource for analyzing patient health status. However, the prevalence of missing data in EHR poses significant challenges to existing methods, leading to spurious correlations and suboptimal predictions. While various imputation techniques have been developed to address this issue, they often obsess difficult-to-interpolate details and may introduce additional noise when making clinical predictions. To tackle this problem, we propose SMART, a Self-Supervised Missing-Aware RepresenTation Learning approach for patient health status prediction, which encodes missing information via missing-aware temporal and variable attentions and learns to impute missing values through a novel self-supervised pre-training approach which reconstructs missing data representations in the latent space rather than in input space as usual. By adopting elaborated attentions and focusing on learning higher-order representations, SMART promotes better generalization and robustness to missing data.


SurgicAI: A Hierarchical Platform for Fine-Grained Surgical Policy Learning and Benchmarking

Neural Information Processing Systems

Despite advancements in robotic-assisted surgery, automating complex tasks like suturing remains challenging due to the need for adaptability and precision. Learningbased approaches, particularly reinforcement learning (RL) and imitation learning (IL), require realistic simulation environments for efficient data collection. However, current platforms often include only relatively simple, non-dexterous manipulations and lack the flexibility required for effective learning and generalization. We introduce SurgicAI, a novel platform for development and benchmarking that addresses these challenges by providing the flexibility to accommodate both modular subtasks and more importantly task decomposition in RL-based surgical robotics. Compatible with the da Vinci Surgical System, SurgicAI offers a standardized pipeline for collecting and utilizing expert demonstrations. It supports the deployment of multiple RL and IL approaches, and the training of both singular and compositional subtasks in suturing scenarios, featuring high dexterity and modularization. Meanwhile, SurgicAI sets clear metrics and benchmarks for the assessment of learned policies. We implemented and evaluated multiple RL and IL algorithms on SurgicAI. Our detailed benchmark analysis underscores SurgicAI's potential to advance policy learning in surgical robotics.


A Conditional Randomization Test for Sparse Logistic Regression in High-Dimension

Neural Information Processing Systems

Identifying the relevant variables for a classification model with correct confidence levels is a central but difficult task in high-dimension. Despite the core role of sparse logistic regression in statistics and machine learning, it still lacks a good solution for accurate inference in the regime where the number of features p is as large as or larger than the number of samples n. Here we tackle this problem by improving the Conditional Randomization Test (CRT). The original CRT algorithm shows promise as a way to output p-values while making few assumptions on the distribution of the test statistics. As it comes with a prohibitive computational cost even in mildly high-dimensional problems, faster solutions based on distillation have been proposed. Yet, they rely on unrealistic hypotheses and result in low-power solutions.


Learning to solve TV regularised problems with unrolled algorithms

Neural Information Processing Systems

The resulting optimization problem is usually solved using iterative algorithms such as proximal gradient descent, primal-dual algorithms or ADMM. However, such methods can require a very large number of iterations to converge to a suitable solution. In this paper, we accelerate such iterative algorithms by unfolding proximal gradient descent solvers in order to learn their parameters for 1D TV regularized problems. While this could be done using the synthesis formulation, we demonstrate that this leads to slower performances. The main difficulty in applying such methods in the analysis formulation lies in proposing a way to compute the derivatives through the proximal operator. As our main contribution, we develop and characterize two approaches to do so, describe their benefits and limitations, and discuss the regime where they can actually improve over iterative procedures.


Interaction-Grounded Learning with Action-Inclusive Feedback

Neural Information Processing Systems

Consider the problem setting of Interaction-Grounded Learning (IGL), in which a learner's goal is to optimally interact with the environment with no explicit reward to ground its policies. The agent observes a context vector, takes an action, and receives a feedback vector--using this information to effectively optimize a policy with respect to a latent reward function. Prior analyzed approaches fail when the feedback vector contains the action, which significantly limits IGL's success in many potential scenarios such as Brain-computer interface (BCI) or Humancomputer interface (HCI) applications. We address this by creating an algorithm and analysis which allows IGL to work even when the feedback vector contains the action, encoded in any fashion. We provide theoretical guarantees and large-scale experiments based on supervised datasets to demonstrate the effectiveness of the new approach.


Instruction Tuning Large Language Models to Understand Electronic Health Records

Neural Information Processing Systems

Large language models (LLMs) have shown impressive capabilities in solving a wide range of tasks based on human instructions. However, developing a conversational AI assistant for electronic health record (EHR) data remains challenging due to (1) the lack of large-scale instruction-following datasets and (2) the limitations of existing model architectures in handling complex and heterogeneous EHR data. In this paper, we introduce MIMIC-Instr, a dataset comprising over 400K open-ended instruction-following examples derived from the MIMIC-IV EHR database. This dataset covers various topics and is suitable for instructiontuning general-purpose LLMs for diverse clinical use cases. Additionally, we propose Llemr, a general framework that enables LLMs to process and interpret EHRs with complex data structures. Llemr demonstrates competitive performance in answering a wide range of patient-related questions based on EHR data. Furthermore, our evaluations on clinical predictive modeling benchmarks reveal that the fine-tuned Llemr achieves performance comparable to state-of-the-art (SOTA) baselines using curated features. The dataset and code are available at https://github.com/zzachw/llemr.


Instruction Tuning Large Language Models to Understand Electronic Health Records

Neural Information Processing Systems

Large language models (LLMs) have shown impressive capabilities in solving a wide range of tasks based on human instructions. However, developing a conversational AI assistant for electronic health record (EHR) data remains challenging due to (1) the lack of large-scale instruction-following datasets and (2) the limitations of existing model architectures in handling complex and heterogeneous EHR data. In this paper, we introduce MIMIC-Instr, a dataset comprising over 400K open-ended instruction-following examples derived from the MIMIC-IV EHR database. This dataset covers various topics and is suitable for instructiontuning general-purpose LLMs for diverse clinical use cases. Additionally, we propose Llemr, a general framework that enables LLMs to process and interpret EHRs with complex data structures. Llemr demonstrates competitive performance in answering a wide range of patient-related questions based on EHR data. Furthermore, our evaluations on clinical predictive modeling benchmarks reveal that the fine-tuned Llemr achieves performance comparable to state-of-the-art (SOTA) baselines using curated features. The dataset and code are available at https://github.com/zzachw/llemr.